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ABSTRACT

Representing an energy field over an interval of time by a single, multi-
dimensional array of data permits formulations of the sensor-array problem
that are well suited to use of known mathematical techniques on existing
mathematical machines. We consider some resulting transformations and
analysis procedures that can provide operationally useful information from
operational acoustic arrays. In particular we discuss (a) multidimensional
generalized transforms that map arrays of data into arrays of coefficients
of basis functions and (b) formal analysis procedures that operate on the
arrays of coefficients to provide estimates of desired field or source pa-
rameters. The data arrays may result from nonuniformly spaced sample
points in space and time. The basis functions are exemplified by exponen-
tials in wavenumber-frequency space, and for that case analysis-of-variance
techniques may be applied to the array of coefficients to provide estimates
of the spatial and temporal frequency components of the field.
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SOME INFORMATION PROCESSES
FOR ARRAYS OF SENSORS

INTRODUCTION

In much of the work done using arrays of sensors it is assumed that the energy field
can be represented adequately by a finite set of discrete sample values taken at points
in space [1-10] and time [11-17i . Representing a field over an interval of time by a
single, multidimensional array of data permits formulations of the sensor-array prob-
lem that are well suited to use of known mathematical techniques on existing mathemat-
ical machines. We consider here some resulting transformations and analysis proce-
dures that can provide operationally useful information from operational acoustic arrays.
In particular we discuss (a) multidimensional generalized transforms that map arrays
of data into arrays of coefficients of basis functions and (b) formal analysis procedures
that operate on the arrays of coefficients to provide estimates of desired field or
source parameters. The data arrays may result from nonuniformly spaced sample
points [18-21] in space and time. The basis functions are exemplified by exponentials
in wavenumber-frequency space, and for that case the analysis may be applied to the
array of coefficients to provide estimates of the spatial and temporal frequency com-
ponents of the field.

The use of multidimensional Fourier transforms to estimate the properties of
seismic, meteorologic, and acoustic fields is well known [22-26] . There are some
particular advantages to their use on the acoustic fields arising from distant periodic
acoustic sources, that is, fields composed of periodic plane waves. The use of general
complex exponentials and of certain non-Fourier basis functions for representing
selected classes of waveforms is also well known [27-32]. Some of these techniques
and some related interpolation and approximation procedures are developed further
for application to multidimensional arrays of nonuniformly spaced acoustic sensors.
Analysis-of-variance techniques are then applied in the transform domain to obtain
the desired estimates. A review of some previous work on the representation of con-
tinuous functions by sets of discrete values, that is, sampling and interpolation theory,
is given in Appendix A.

Work by Iyer, Berg, and others [22-241 on seismic array processing by integral
transformations and work by Andrews, Oppenheim, and others [33-36] on image proc-
essing was taken as a point of departure in studying multidimensional transformations
for sampled data from arrays of sensors. The aliasing and side-lobe structures for
turier transforms of two-dimensional arrays of data (time samples from one-

dimensional arrays of sensors), and the affect of conventional smoothing (hamming,
hanning, etc. ) and of some other forms of smoothing on two-dimensional transformed
data, were investigated. A computer program was developed to simulate an environ-
ment and an operational acoustic system, including estimating the parameters of
signal components (i. e., estimating the location, frequency, and amplitude of each
signal-component source).

These simulation studies, when applied to a model of one important Navy problem,
showed that more general transformation procedures were needed if full advantage was
to be taken, in real systems, of actual array characteristics and of the wave-equation
constraints on space and time data from acoustic fields. In particular, when high
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performance must be achieved over several octaves of frequency, adequate sampling of
adequate apertures in space and time becomes prohibitively costly. Conventiornal array
processes lack effective synthesis procedures and generally lack desired uniformity of
system performance over the expected range of environmental situations. Most actual
synthesis procedures for space-time processing, those of Wiener, Bryn, Mermoz,
Widrow, and others [23, 37-40[, have seemed unattractive for certain important Navy
acoustic problems, both because they assume either unnecessarily broad classes of

--signals-or-exactly-known signals-a-nd because-they-do notlea-tcteffectivaspace-and.
time sampling procedures (i. e., array design and sample spacing).

A promising approach, related both to work of Huggins et al. [27, 41,421 and to much
fundamental work in mathematical analysis[see, for example, Refs. 43,44, and 451, is
that of transformations using carefully selected basis sets (sets of multidimensional func-
tions or sets of number-arrays) by which a desired class of multidimensional signals
(acoustic fields) can be adequately and efficiently represented. As we are concerned
only with finite intervals of space and time, with band-limited signals and noise, and
with energy fields constrained by the acoustic wave equation and by other known source
and medium constraints, the general representational problem may be simplified and
narrowed to manageable size without doing violence to its relation to the real world.
All of the mathematics is finite and discrete (and can be expressed interchangeably
in mathematical language or in a suitable computer language). In particular, if we
actually have to deal with only a moderate number (perhaps a few tens of thousands)
of different signals, and if this number is a sufficiently small fraction of the total num-
ber of different signals that are allowed and resolved by the bandwidth and the space and
time aperture of our system, we may reasonably take the signals themselves (or rather,
the set of space and time samples of the signals) as our basis set. That is, if the aum-
ber of different signals is small enough, it may be reasonable to provide analysis that
is the equivalent of multidimensional matched filtering for each different signal E461

In general the multidimensional transformation matrix for an arbitrary s ample-
point spacing and an arbitrary basis set cannot be factored to as great an extent as in
fast-Fourier-transform processing of uniformly spaced samples. The conditions under
which factoring of the matrix is maximized and the question of whether acceptable con-
straints exist on array design that provide a highly factorable matrix (i.e., that reduce
processing operations by approximately log2 rmn) are being investigated. Where uniform
sampling is done in one dimension of a multidimensional sample space, matrix factoring
is possible (e. g., for an m-by-n sample set, if the m samples are uniformly spaced and
the n samples are not uniformly spaced, the number of operations can approach
(m log2 M) ?

2 . Thus if m is very large compared to n, a very efficient transformation
is possible even with nonuniform spacing of the n samples). Other questions of weight-
ing or smoothing criteria for transformations of nonuniformly spaced samples, of
aliasing effects, and of sensitivity of the transformations to sample location errors, are
being investigated.

By this transformation approach the entire field as seen by the sensors is repre-
sented by a single, multidimensional array of numbers (e. g., an array of complex num-
bers in wavenumber-frequency space). Established statistical testing procedures can
be adapted for estimating the signal parameters. Initial computer simulation runs
applying analysis of variance to simulated eight-element and 16-element acoustic arrays
have been made. This technique yields estimates of the effects of physically signifieant
subsets of the transformed data. The result is that expected of an optimum receiver,
since the F test used can be derived by maximum-likelihood methods E471. Further
work is being done on modified analysis-of-variance procedures that will be more effec-
tive in the presence of highly nonisotropic and nonwhite noise fields. All of these test
programs, as well as transformation programs, are kept in a form that can be applied
to recorded field data from operational acoustic arrays as well as to the simulated
acoustic fields that are used in developing the tests.

2
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In summary, as a step toward the effective application of advanced programable
digital machinery to the outputs of the sensors of large, wide-band, operational acoustic
arrays, we aim for these capabilities:

1. Procedures for transforming sets of values at arbitrary (or nearly arbitrary)
points in an energy field into a representation in an arbitrary (or nearly
arbitrary) estimation space. That is, procedures for expanding a finite set of
discrete data, representing a field at selected points in space and time, on a
selected finite set of multidimensional basis functions.

2. Procedures for selecting sampling points in space and time and for selecting
basis sets for signal representation, in terms of the expected characteristics of
the acoustic field and in terms of the kinds of information wanted from the field.

3. Procedures for estimating desired parameters of acoustic fields (or acoustic
sources) from the representation of the field on the selected estimation space
(or basis set).

In this report we discuss some work on the first and the third of these. Generalized
multidimensional transformations that can represent data from nonuniformly spaced time
samples from nonuniformly spaced array elements, on a large class of sets of basis
functions, are discussed in the next section. Analysis-of-variance processes for esti-
mating the parameters of signals from their representations on the selected set of basis
functions are discussed in the third section.

The familiar wavenumber-frequency (Fourier) transformation that is used on
seismic-array data, together with the various statistical tests applied to the transformed
data [23, 24, 48:, is an example of the general approach considered here. We begin with
a more abstract formulation of the array problem, because this facilitates consideration
of some other concepts and techniques which appear promising for our application - that
is, for a study of transformation and estimation techniques for real-time application to
large operational acoustic arrays, using computing machinery forecast for about the
period 1973-1978.

INTERPOLATION AND TRANSFORMATIONS

Finite series consisting of the linear combination of a finite number of basis func-
tions have been used extensively to approximate continuous functions which have been
sampled on a finite range of their independent variables. When the set of basis functions
used is orthogonal on the sample points, these finite series exhibit many properties of
infinite series and functional transformations [49]. As a result of this fact and as a
result of simplification of calculations resulting from orthogonality of the basis func-
tions, most of the work on finite series has been concentrated on the use of orthogonal
basis functions. A desired representation of an acoustic field which has been sampled
at unequally spaced intervals by sensors in an acoustic array may not result in ortho-
gonality of the basis set.

In the discussion which follows, quite general expressions are derived for approxi-
mations based on nearly arbitrary selections of basis functions and sample points.
These results are applied to processing of information sampled by acoustic arrays

3
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Theory

Following notation similar to that used by Young and Huggins [291, a function f(X)
may be approximated over a finite range L of its independent variables by a finite sum
of n basis functions sk (x) by

f~. Ck Skt > (1

k=l

In this expression f 1(x Ckt and Sk (x) may be real or complex. The quantity x denotes a
vector, the components of which are the independent variables. Sampling f(x) at the na
points xi (j = 1, 2,.. . >t) yields the m approximations

(Xi); 2Ck3-,(x,), i= 1, 2, in >B. (2)
A=1

If the number of sampling points equals the number of basis functions (a = n) , the
approximation sign in (2) may be replaced by an equal sign to yield n equations in the
n ck s which, if independent, may be solved for the Ck s. In this case the approximation
of the continuous function in (1) becomes exact at the sampling points and the finite
series becomes an interpolation between the sampled points. If the number of sampled
points exceeds the number of basis functions (m > n), the approximations (2) may be
solved for the ck Is subject to some desirable constraint, e. g. , least-square error;
mn = n is a special case of m > n for which the error of representation of the function
at the sample points is zero.

The differences between the left and right sides of (2) represent the errors in
approximating f(x) at the sampling points. Following the approach taken in infinite
series representations the ck 's will be determined to minimize the sum of the squares
of these error terms. Representing this sum by e21

m , - 12

e2 = Z [F ( X) ) - Ck Sk (xi . (

To minimize e2 Eq. (3) will be differentiated with respect to the real and imaginary
parts of each ok and each derivative will be set equal to zero. This will result 'in n
equations from the derivatives with respect to the real parts and n equations from the
derivatives with respect to the imaginary parts. If these 2r- equations are independent,
they may be solved for the n complex values of ck. Let ak be the real part and b* be
the imaginary part of ck:

ck = if + ibk

Differentiating with respect to a. and b3 yields

a |+ f(Xd Ck [ k (x xci k

+5Ss(xi) [f&<k) -E k (4)

4
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and

= -i ) 's(Xj)
i=1

Dbs

S ()[ ) -,

[f (Xl) - L; CASk(Xi)]

Ck Sk (XiI = 0, (

where the overbar denotes the complex conjugate. The 2 n real equations (4) and (5) may
be combined into n complex equations by setting

ae2 + .
aS

which after simplification gives

(6)

ZL S -(X) E YCk Sk (x) -
i=l k-I

(7)YS (xd) f x = 0.
J=

1

Since the range of the sums in Eq. (7) are finite, the order of summation may be
interchanged to yield

(8)E ck I §S (x, ) Sk (XI ) :y IS- (-I ) f (-J) .
k=l Jml .= I

Equations (8) represent a system of n equations in the n unknowns ck which, if they
are linearly independent, may be solved for the Ck t s.

The conditions in Eqs. (4) and (5) which lead to Eq. (8) insure that the solutions
of Eq. (8) will lead to a stationary point in e 2. As e2 is a non negative quadratic form
in the c<ts, this stationary point is assumed to be a minimum.

Examination of Eq. (8) indicates that considerable simplification will result from
introduction of matrix notation. The rn-by-n matrix P will be defined by

P -[P] [I [Sk(xj )]- (9)

We also introduce the vectors f and c:

f - [fl * X fm I'= [f(X0) . . . 1 f(x )]

C [c1 , .- C.,

5

(5)

'& e2 = 0 ,

dbs
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m terms of these newly defined quantities, Eq. (8> may be written

Ptp = ptf, (lay

where Pt denotes the Hermitian conjugate of P, the n-by-rn matrix which is the complex
conjugate of the transpose of P: Pt [Pci . If the n-by-n matrix (PfP) is nonsingular,
its inverse exists, and we have

= (ptpfl ptf (1.

Equation (11) states that Pt operates on the at-dimensional vector to project it on to an
n -dimensional space; the n-dimensional c is computed from this projection by the
transformation (Ptpr- 1 Equation (11) permits computation of the coefficients Ck of
the n basis functions Sft(X) in (1) to yield a best (least-squares) approximation of the
m sample values f(x,) subject to the limitation that the n -by-n matrix formed from the
Sk sampled at the xi (PtP)-', be nonsingular. This is the only limitation imposed on
the basis functions or the sample points to validate Eq. (11).

Three special eases of Eq. (1i) are important in the discussion which follows: (a} the
number of sample points and basis functions are equal (m a), (b) the basis functions
form an orthonormal set, and (c) f(x) is one of the basis functions.

When ma = n, the matrices P, P-i, and Pt are square. In this case the condition
that PtP be nonsingular requires that P-' and Pt be nonsingular. Invoking the matrix
identity (AB)-' = RI A-' permits Eq. (11) to be written

c = (PtP)-l Ef = p--Ipt-lptf = -pf (12>

This equation could have been obtained directly from (2) with the approximation sign re-
placed by an equal sign. It permits the finite series in (1) to be fitted exactly to sample
points f (xj). Choice of the basis functions and the sample points is subject only to
the limitation that the matrix P be nonsingular. Thus, for example, the spectrum of a
continuous function f(x) may be estimated from a set of samples ftx) even though the
sampling points are not equally spaced on x. Similarly the spectrum may be estimated
at a set of nonharmonically related frequencies. It should be noted that P`l depends
only on the basis functions and the sample points and thus need not be recalculated for
each new set of sampled data. The techniques of the fast Fourier transform [493 are
applicable to the computation of Eq. (12) if the matrix P-1 is factorable but in general
will not be as advantageous as in the case of harmonically related basis functions and
equally spaced sampling points.

If the basis functions form an orthonormal (not necessarily complete) set, then

ZSk(xi) Sh(xJ) = Ski (1fi

i. e. , PtP = I where I is the n-by-n identity matrix. In this case Eq. (II) becomes
C = ptf or

Ck L S(jx) (x) (14)
=1j

6
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The expression is independent of the relative sizes of m and n; that is, it is valid for
both exact fitting of the data at the sample points and for fitting in the least-squares
sense. In other words the coefficients of the basis functions which form an ortho-
normal set are independent of which subset of the functions is used to form a least-
squares fit to the data. A special case of this is the truncation of a Fourier series for
smoothing experimental data L50 .

If the function to be approximated is one of the basis functions, the vector f is the
kth column of the matrix P. Thus ptf is the kth column of the matrix (PtP) . By defini-
tion of the inverse (ptp)-' the kth element of (PtP)-l(Ptf) will be unity and all other ele-
ments will be zero. This outlines the proof of the intuitive conclusion that, if f(x) is one
of the basis functions, approximation (1) will be a least-squares approximation to f(x)
if the coefficient of only the appropriate basis function is different from zero. This re-
sult will be of special interest in the discussion of processing signals from an acoustic
array.

Interpolation and Smoothing

Expression (1) is the approximation of a function over a continuous interval of its
independent variable. Equation (11) permits calculation of the coefficients C k in (i)
to make it a best (least-squares) approximation to the sampled data by using a matrix
determined by sampling the basis functions at the sampling points. When the number of
sampling points exceeds the number of basis functions (m > n), Eq. (2) approximates
the function at the sample points, in the least-squares sense, and (1) may be considered
a smoothed representation of the continuous function f(x). When the number of sampling
points equals the number of basis functions {m = n), (1) is exact at the sampling
points x, and provides interpolation between the sampling points.

To simplify the notation further we introduce the matrix U - (Pt P)-' Pt. Then
Eq. (11) may be written c = Uf, or

Ck = ZUkj f (xi) (15)
j =1

Substituting (15) in (1) yields

f(x E E ZUj f(xj) Sk(x)
k=1 j=1

or

a= z [t=, Uk X] 1(x(16)

The inner sum in (16) is an interpolation function when m in and determines the con-
tribution of each sample point to the continuous approximation of f(x) . It is a smoothing
function when in > n. Let

I(x, xi E UkjSk(x), J = 1, 2., m (17)
k-i

7
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represent these interpolation (or smoothing) functions. The exact forms of the Its
will depend on the choice of the basis functions and the sampling points and in general
will be different for each x ,. Some examples of the analogous infinite cgse are given
in Appendix A, and the finite case is illustrated in Appendix B. -'i -

Spectrum Estimates - Discrete Fourier Transforms

For acoustic signal detection and parameter estimation it is desirable to use the
coefficients c k in (1) rather than the continuous approximation represented by that
equation. It is customary to speak of the Ck 's as a "transformed" representation of
the f (x,) 's, the transformation being carried out by the matrix (TP}tF 1P in Eq. (11).
The exact nature of the transformation and the appropriate interpretation of the result
will depend on the basis functions chosen and on selection of the sample points x,.

The most widely used transformations of this type involve imaginary exponentials for
basis functions:

Sk(x) = e 2
7f1kx, (18

where the fk are chosen to be equally spaced in the "frequency" domain and the x1 are
equally spaced on x. These transformations have many properties similar to the
conventional Fourier transform [49 - 52; and have therefore become known as the
discrete Fourier transform (DFT).

If the function f(x) is band limited and the sample point spacing satisfies the
Nyquist criterion, and if f(x) is periodic on the interval over which the samples are
taken, i. e. , f(x) = f(x + L) , the DFT will yield precisely the same information as
the conventional Fourier transform. Of considerable interest is the interpertation, of the
DFT when these criteria are not satisfied.

Because of the parallels with computation of the Fourier transform, calculation of
the ck's for the case of equally spaced fA and x1 is usually referred to as determina-
tion of the complex spectrum of 1(x) . Estimation of the complex spectrum from the
CAIs has received considerable attention in the literature [53, 541. Errors from the
use of the DFT to estimate the spectrum arise from two sources: the finite range of
x over which f(x) is sampled and the finite number of samples taken within this range.
As indicated, these limitations do not give rise to errors when the function F(x) is band
limited and is periodic over the interval on which it is sampled. For more general
functions the first limitation (finite interval of x) results in the spectrum being sampled
by a finite window, which may extend over a considerable range of frequencies. The
second limitation (the finite number of samples within the interval) results in aliasing
of the spectrum. Rather than treat these phenomena as separate this discussion will
show that they both may be considered as direct consequences of the way in which the
C k Is are generated. We will first consider the interpretation for a single imaginary
exponential and then treat a more general f(x) as the superposition of such simple
functions.

First consider the case for which f(x) is the single exponential

f(X) = e 2nifx,
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The usual computation of the DFT corresponds to selection of basis functions and sample
points:

Sk(x) - e2r i (k- 1 ) x/L ); X = (j-_1) L/n (19)

where L is the interval over which f(x) is sampled and n is the number of sample points
within the interval. Using the orthogonality of the Sk(xj) the coefficients of the DFT may
easily be shown to be

Ck E e27i(fL-k+1) (j-l)/n (20)
j= 1

When fL is an integer, f(x) is one of the basis functions and we have, in accord with the
previous discussion, cfL+I = 1 and Ck = 0 if k Z fL + I . When fL is not an integer, Eq.
(20) generally yields nonzero values for all Ck , which may be interpreted as spreading
or leakage caused by the window referred to earlier.

An interesting interpretation of Eq. (20) is obtained by considering the interpolation
function which arises from the choice of basis functions and sample points in Eq. (19).
From Eq. (17) that interpolation function is

I(x, xi) = - e2 li(nx/!d+l)(k-l)n (21)

This expression is exactly the same form as that for the DFT in Eq. (20) with nx/L
playing the role of fL and the roles of i and k being reversed. This symmetry arises
from the orthogonality of the Sk(x) and the symmetrical appearance of k and i in both
Eq. (19) and Eq. (20) and does not holdfor other choices of the basis functions and
sample points. For this case (basis functions which are equally spaced, imaginary ex-
ponentials, and equally spaced sample points) the spectral window has just the same form
as the interpolation function based on the same choice of basis functions and sample points.

If f(x) is of the class L2(-o, Co), it may be expressed as a superposition of imagi-
nary exponentials by its Fourier integral:

f(x) = F(f) e2 i fx df (22)

where F(f) is the complex spectrum or Fourier transform of f(x) . Again using the
orthogonality of the sk(x),

CA = JF(f) [ Ze27i (F&Lk1) (il)/ln df
j= 1

- J F(f) w(f) df (23)

where the weighting function w(f) is the spectral window applied to F(f) in calculating
the DFT. The utility of the cA's for estimating F(f) stems from the fact that w(f)
(which as we have seen has the form of the corresponding interpolation function in

9
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Eq. (21) has a maximum value at fL = k - I and is smaller elsewhere. As the number
of sample points tends toward infinity, we have,

CA - r (f) [ji FL-kII) sin r7(fL - k +1) )F (24)17 ~~w(fL - k+ j

The exponential term arises because the sample points X are not symmetrically dis-
posed about x = 0, and the sin x/x term is the actual shape of the spectral window.

It can be seen that, as the interval L over which f(x) is sampled (the aperture)
increases, the width of the window decreases. It can also be seen that its shape is
independent of k. Thus each ck arises from application of the same window, centered
about a different frequency f = (k - 1)/L.

It can be seen from Eq. (23) that the window used in determining Ck is periodic
on the interval WL. Thus w (f) has peaks at

k-i + ( j = 25 ), ±2,
L I

If the ok is considered to represent F(f) in the vicinity of the peaks of w(f), it is seen
that each Ck may contain contributions from F(f) at several frequencies. This phenom-
enon is the spectral aliasing mentioned earlier. Even if the Nyquist criterion is
satisfied, i. e. , F(f) = o for f > n/2L, some aliasing can occur as a result of the
finite width of the window.

When fk or x. are unequally spaced and f(x) is a single imaginary exponential,
the coefficients Ck may be written, using Eq. (15), as

iniCk = LUhi e 2 gflhf}i (26 t

As in the previous discussion Eq. (26) when considered a function of f is the weighting
function applied to F(f) in determining the approximate spectrum o f (x). The sym-
metry between j and k is not present in this equation, and in general the form of
the function depends on k; i. e. , the weighting function differs for each coefficient
ca . If the sample points x. are equally spaced (whether or not the fk are), the CA
will be periodic in f on an interval of r/2L and the preceding discussion of spectrum
folding applies. When the xJ are not rationally related, the Ck will not be periodic
but will still have a multiplicity of peaks. In general the peaks will have different
magnitudes and shapes, indicating that the weighting applied to each alias will be
different. There is no assurance that the peak at f = (k - 1)/L will be the largest,
as can be seen in Appendix B.

Power Spectrum and Total Power

The power density function PDF of f(x) as expressed in Eq. (22) is usually given
to be

W(f) = |F(f) 2.

10
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To the extent that ck represents an approximation of F(f) Icat 2 may be used as an
approximation of W(f)

The total power is expressed as

l= J W(f) df

or

Inn 1im f f)2 ax. (27)

A useful estimate of the total power is

1 2 1 " n 2
-1 Z I f (xj) | E I Z Ck Sk (Xj)

j=1 j=1 k=1

which becomes

E Ek C~h [ k n (j ) Sh(X 0 (28,
k=1 h=I jIAl

When the basis functions are orthogonal on the sample points, this simplifies to

= 1 1C2, (29)
k= 1

which is parallel to Eq. (27). It is important to note that Eq. (29) does not hold for
nonorthogonal basis functions.

Smoothed Spectral Estimates

Even when large numbers of samples and large apertures are used, ck and IckI 2
have disadvantages for estimating the spectrum F(f) and the power density function
W(f) . One disadvantage, already mentioned, is that the weighting function w(f) may
not fall off sufficiently rapidly from its peak value to permit accurate estimation of
F(f) for those cases where If) itself may have large peak values. That is, the
leakage caused by the "side lobes" of the spectral window may cause a large peak in
F(I) to mask the true spectral levels at other frequencies. A second problem is that
for many classes of f(x) the Ck may not be a consistent estimator of F(f) [54]. For
these reasons, considerable attention has been given to the problem of improving the
estimates, and in particular to estimation of the PDF. Some techniques involve
operations on f(x) directly, before transformation, and others operate on the ck Is
after transformation. In whatever domain the smoothing operation is performed,

11
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it may be considered an attempt to improve the spectral window used to determine the
Ck'S.

Consider, for example, application of a weighting function applied in the x domain:

f' (x) = f(x) 6(x)- (30)

The Fourier transform of ff(x) is the convolution of F(f) and 0(f), the transform of

F(f) =f(-X) F(k) dA.

The coefficient Ck is thus seen from Eq. (23) to be

CA = fF'f(f) df = ff w(f)(fI- K)F(X) d-dX

=fF(f)[f(K)wc(f + k) dA] dfp (SI)

The expression in brackets is a modified weighting function formed from (f ) and the original
weighting fiuntion w(f). Thus the new weighting function, or window, is formed from
the old by a process which does not depend upon selection of the basis functions or
sample points.

For some applications it is desirable to perform the smoothing operation in the f
domain; for example, for n basis functions

%qk =EC~ho Cnf C~s.C~k ~Cn-k *(32)

If the operation is to be carried out frequently using the same smoothing function, it
may be desirable to introduce a new matrix F', computed once and then used in place
of p-l in computing the CAts. Thus

[f;k> Xh [ Yi,+hj. (33)

For the special case where the frequencies of the basis functions are equally spaced
the spectrum of O(x) is a sum of delta functions,

0(f) = h S(f - .h
h

and the corresponding weighting function to be applied in the x domain is

0t} (X) @yh e2aihxi/L 3)

Most of the smoothing functions discussed in the literature are symmetrical about h= 0
in which case Eq. (34) becomes

a(xi) = Oo + +2 a cos (277 hx/L). (35)

Note that these equations are applicable for arbitrarily spaced x, t

12
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Sampling and Transforming Acoustic Fields

A wave in a three-dimensional medium can be represented by

F(kx, k,, k, f) =ffffl(x, y, z, t) ._ 2 ri(kxx+kvY+kz+ft)e dxdydztt (36)

where the k's are the wavenumber components in the direction of their respective
space coordinate axes [24]. The wave along a line in the field can be represented by

F (k, f ) fff(x, t) e-2 i (kX + f t)dxdt. (37)

which is analogous to the Fourier transform representation of a picture in transform
image coding [55]. Finite discrete processes (digital computers) can, of course, per-
form transformations on sampled data from acoustic arrays. The discrete Fourier
transform analogous to the transform of Eq. (37) has been used in several simulation
experiments, and one example of its use with an analysis of variance process is dis-
cussed in the next section.

The pressure Q in an acoustic field in a homogeneous medium satisfies the wave
equation

V2, 1

C2 = 2 (38)

Its solution can be expressed as single-frequency plane waves summed over all direc-
tions of travel and over all frequencies. This plane-wave expansion may be written

+j(x, y, Z. t) = fffeois 6, k) eik [ct-sine(xcosr+ysinv)-zcosG]dI~dodk, (39)

where X and e are the usual polar coordinates of each plane-wave component.

Many acoustic problems (for example detecting and locating specific sound
sources) require estimating v as a function of wavenumber and direction from samples
of 0 taken over a limited region of space and over a finite time.

Let the coordinates of the hth sensor be the components of the vector rh I
h1, ... , m and let the output of each sensor be sampled at the times t j = 1, n.
Then a data array consisting of m x n data points #(rh, tj) results. Using the
approach taken previously, some N < m X n basis functions could be selected to approxi-
mate the field, and the techniques previously described could be applied to determining
the coefficients of the approximation and interpreting the results as an estimation of
the desired properties of the field. Instead we may choose m' basis functions which
depend on space only and n' basis function which depend on time only. The approxima-
tion is the double sum over products of these basis functions:

t) Y ~~~~~~~~~~~~(40)#ar, t) ::Y cpqSp~r)TqCt) .(0
p=i q-i

Approximation (40) is the equivalent of (1). Following the procedure used previously,
the error in approximating each of the values in the data array may be determined and
the coefficients chosen to minimize the sum of the squares of these errors.

is
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The result, equivalent to Eq. (7), is

I 0

t t ;Srfth)Tv(ti) Y ± CpSq(rh>Tq(tj) = X S gjrh)T (t1) 0(rh. tj)
i=1 5=I p-l q=l hb- i-l

or equivalently

11=1 (rJ ) 0 (r.l t )T ) .
h=l j=l

The matrices P and Q are defined in terms of the basis functions as

(42)
p- [p1 -p~ (rh) andQo [LQ. Tq(tj)

Those representing the array of coefficients cp, and the data array are

(431
C-= [Cql and +P [ Phj] - (rh, ti).

In terms of these matrices Eq. (41) may be written

(Pt P) C (Qwt) _ Pt 1kQt. (44)

If the matrices ptP and QQt are nonsingular (the only limitation on selection of basis
functions and sample points), Eq. (44) may be solved for c as

C = (PtP)-y PI (QQC)-
(45)

Equation (45) is analogous to Eq. (11). Note that the order in which the space transform
(PtP)-y pt and the time transform QK'(QIQ)-1 are applied is immaterial. We introduce
the matrices U and V such that

U- [UJ,] =-(Pt P)-' Pt and V EYjq] = QT(QQP)-'. (4&)

The discussion of Eq. (II) involving equality of m and n, orthogonality of the basis func-
tion on the sample points etc. applies to Eq. (45). In particular, if in = iM', then U = p-1
and if n = n', then V = '-1. If the basis functions are orthonormal on their respective
sample points, then U = Pt and V = Qt, which leads to

-pq I .r I Sp (r) Y (t j q (;l, t) . (47)
h=1 J=t

(41)
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For arbitrary m and n the procedure which led to Eq. (17) now leads to the analogous
interpolation function (or smoothing function)

.(r, rhI t, ti)= ZUPhSp(r) E Vjqrq(t)* (48)
p=l qll

This is just the product of two interpolation functions of the type which has already been
discussed.

To estimate W(,f, 0, k) in Eq. (39) we consider first the case where fi(r. t) is a
single plane wave of a single frequency. Then

T(Q, 8, k)= 8(Q-40) a(-00o) (k-ko),

and the pressure wave may be written

P(r, t) = eiko(ct-r. No) (49)

where No is a unit vector in the direction of travel of the wave and

r No - (x cosIP0 + ysin 0 ) sin0 0 + z cos

For this case the coefficients in (40) become

Cpq = Eph ekOrh No V eikoci,
h=l j~l

which is the product of two expressions similar to that in Eq. (26). For the plane-wave
expansion in Eq. (39), the coefficients may be written

Cpq =,ff.f' (X, du, k)w "(k) W(,, 9, k) dfd~dk, (50)

where the weighting functions W' and WI' are

w'(cf, 01, k) = ZUh e-ikrh 
h~l

and

(k) VIj qe
j=l

These expressions are similar to Eq. (26), and the discussion pertaining to that equation
involving folding or aliasing, shape, etc. applies here also. The dependence on k is a
result of the link between space and time variables which arises because the pressure
wave must satisfy wave equation (38).

15
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ANALYSIS OF VARIANCE

The analysis of variance is a statistical technique used to separate the influence
of different sets of parameters on observed data and to estimate their effects. It was
originally developed by R. A. Fisher in the -1920's for application to agricultural ex-
periments. We apply it here to the two-dimensional discrete Fourier transform of time
samples from a line array of sensors.

En the form suited for this wavenumber-frequency data, the "two-way layout," we
consider K replications of I-by-I data matrix. Let Yi., denote, the ijthcell. We
assume initially that

YikiJ "wij + efjk ](1

where the 6)J} are unknown constants and the (eljk) are (initially) independently and
identically distributed normal variates with zero mean.

In the original applications the (Yijk} may have been crop yields, with the rows
corresponding to plant variety and the columns to fertilizer type. The experimenter
wished to determine the main effects of rows (variety) averaged over all columns
(fertilizer), the main effect of columns averaged over all rows, and the interactions,
if any, between rows and columns. The interactions were of secondary importance,
but it was nevertheless essential to estimate them, since the effect of a fertilizer on
one variety of plant may not have been the same as that on another.

The technique can of course be applied to any data satisfying the assumptions.
Richters [563 has applied it to the seismic discrimination problem. He was concerned
with estimation of the effects of "nuisance" parameters (such as event magnitude and
distance). Here the absence of interactions between the nuisance parameters greatly
simplifies the discrimination problems Shumway [ 571 has derived a general theory for
using regression and analysis of variance in the frequency domain as a simultaneous
estimation and detection technique for multivariate time series. His model is that
of a "one-way layout, "1 so the concept of interaction does not enter.

By contrast, in our application to the Fourier transform of space-time samples
it is the interaction between wavenumber (rows) and frequency (columns) that is of
primary importance, although the main effects of wavenumber and of frequency may
have interesting physical interpretations as well.

Least Squares Estimates fo the Parameters

We sketch briefly the relevant definitions and theory following Schef f 47 X (see
especially section 4. 3). Using a common notation, a dot replacing a subscript indicates
an average over the missing subscript. For example,

K

YJ.= X Yijk/K dentes the ijth cell mean
1=1

J x
yi = X Y Yjk1JJ denotes the ith row meanl

f=1 k=I

16
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and

I J K

y = I ± I yijA/XJK denotes the overall mean.
i=l j=1 k=1

Let g = 77. represent the (unknown) mean of the two-dimensional spectral components
)i j, The main effects of the i th wavenumber and of the jth frequency are defined as

a. = li. -g. (52)

and

(53)

respectively.

The interaction of wavenumber and frequency is defined as

'ij- = 7?zj -hai -N. j (54)

Because A = 7 ., we have the "side conditions"

a, =N, -Y., =y 0= Vi, Y (55)

The essence of the analysis of variance technique is the examination of inhomogeneities
in the data by means of which we make estimates 'i j, Yi , and i of these unknown
parameters.

The variates ei jk in Eq. (51) represent the noise, which is defined as all unwanted
effects. If we consider the variates to be the "error, " the least-squares estimate of the
parameters is clearly obtained by minimizing the "sum of squares,"

I J K
SS= X Z E (YIjk -ii)2 (56)

ill jI= k=A

An estimate, which will be denoted by a circumflex, is obtained by calculus as in the
previous section. We have

K

h/ = ijk Y - (57)
k-i

Using Eq. (54) and Eq. (66) we can write

I j K

SS= 2E E2 I &Aijk-ai -3/j /j)' (58)
ill m=1 k=l

17
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Equations (55) and (58) yield the least-squares estimates:

A ' J K (59)

g Y I E Yij = Y.

A=i k3l K=

j=1 k=(

'i i (y i j k ai - ffi ) J Y!_ . .i .
k=1

It is important to note that in deriving these estimates no use has been made of any
assumptions of normality, zero mean, or equal variance. We have simply minimized
the least-squares "error,' so that when these estimates exist they are valid
for any distribution of the {e.i 0}- If the {Ci jk} are pairwise uncorrelated, have zero
means, and have the same variance, then these are the unique linear unbiased estimates
with minimum variance [47 ,58,59]. Tests of their statistical significance must of
course depend on the distribution.

Tests of Hypotheses

The general I -by-f analysis of variance with K replications per cell is usually con-
cerned with the testing of three hypotheses:

HA- all a, = 0, (fa)

UB, all /3 = o, (63b)

BAR: all = o. (63

Substituting the least-squares estimate, Eq. (57), for m / in Eq. (5b) we obtain the
minimum sum of squares, or the "error sum of squares,"

I K

SSe = ( yijkiyiJA >* (64)

If the {elJA} are independently normally distributed, SS, can be shown £471 to have a
chi-square distribution with IJ(K- 1) degrees of freedom.

18
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Under the hypothesis HA: all ai - o the sum of squares to be minimized is, from
Eq. (58),

1 J K )2

S S. = Y' I Y (Yi i k- _'ij 

i=1 j=l k=l

Its minimum value, obtained by substituting the estimates given by Eqs. (59), (61), and
(62), is

I J K
SSi.A 222 Y i jk Yi/.+Yi. Y... )

i=l J=1 k=l

=ss+ Jgc& -y )2*

The hypothesis sum of squares is defined as

SSA =SSinA -Sse

=JKYi i Y (65)

Under the assumption of normality SSA can be shown [47] to have a chi-square distribu-
tion with I - 1 degrees of freedom and to be independent of Se. Thus, under this
assumption, the (likelihood-ratio) statistic

FA - SSAI( 7 - 1) (66)
A SS/IJ(K-1)

has an F distribution with v1 = I- and 22 IJ(K - 1) degrees of freedom. If a is
the false-alarm probability, we then have

P [FA < Fa; vI. V2] = (67)

where F.; , V2 is the "upper a point" of the F distribution. If FA > F,,. V1 V"2 the
hypothesis HA is rejected at a level of confidence of a.

Under the hypothesis He: all ,Bj = 0 we have similarly

SSB = IK (y. y )2. (68)

Under the normality assumptions

F. =SB ( 1) )

SS/IJ(- 1)
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has an F distribution with z1 = J - I and v2 = IJ(K - 1) degrees of freedom, and can
be used to test Ho.

Similarly, the hypothesis HAB: all yij = 0 yields

S~snirl^SS + K J(y 1j/ -yi.J -y. +y >2.

We define

SSAB S5.i.AB sse

= Klyii . -yHi, - y j * y )2. 7
* i

If normality is assumed, SSAB has a chi-square distribution with (I - 1) (1 - 1.
degrees of freedom and.~~~~~~5 /F SSABI(1-1)(J-1) (1

has an F distribution with v1 (I- 1) (3- 1) and v2 = UC(K - 1) degrees of freedom.
i F Al > Fa. v, we reject the hypothesis T AB at a level of confidence (false-alarm
probabilityj of a.

Tests of these hypotheses without the assumption of normality will be discussed
later.

Significance of Effects Revealed by the Data

If one or more of the hypotheses (63) are rejected, one would naturally wish to
determine which effect or which interaction led to the rejection. The usual t"t" test of
data that appear large is not valid unless the experiment was designed to test the par-
ticular hypothesis suggested by the data. Valid statistical tests of multiple comparisons
have been derived by Tukey and by Scheffe [47,60,W61. Tukey's method can be applied
to the row (wavenumber) and to the column (frequeney) effects but not to the interactions,
since it requires equal covariances.

Scheffe's test is specifically applicable to "contrasts" suggested by the way the data
fall out. A contrast among the parameters a1 a1 is a linear function of these
parameters.

where the c1 are known constant coefficients subject to the condition

EC =

mm��
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A more useful contrast than the difference ai - aj between any two parameters is the
difference between the averages of any two subsets of the parameters. The interactions
themselves are contrasts (71 = 7wi/ -j . -77 j + X,, ) . We shall be concerned with
these as well as contrasts among interactions, e.g., between the interaction of one cell
and the average interactions of its neighbors.

An estimate of a contrast in interactions is

I J

+ A ACijyij

= E2E Ci j (Yi j. - /i .,Y j,)l
(72)

using (52), where

I .

In general, 0 g 0. We say that $ is significantly different from zero if and only if

I' tA i > 0s 4 I ( 73 )

where S2 =r'F,.; 22, = (I-1)(J-1), v2 = IJ(R-1), and &2¼ is an estimate of var A

given by

I J r .r
02 vYR - E E L Ci j Ci I i cov (yi v,'i,)

i... j~l j'..A j'-l

=92 EE -K JK -ij ci. (74)

Here 52 is an unbiased estimate of the variance 72 and is given by

S2= SS /IJ(K- 1), (75)

where SS, is given by Eq. (64).

The F test based on Eq. (71) will lead to a rejection of the hypothesis TMAB if and only
if some contrast in the interactions is significantly different from zero. The F test can
therefore be considered as a preliminary search to determine the existence of a target
(detection), with the test of contrasts used to determine its parameters (estimation).
Tests of significance of contrasts in the row and column effects are similarly defined.
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Interpretation of Results

It may happen that the hypothesis of no interactions is rejected and the hypotheses of
no wavenumber and no frequency effects are both accepted. In this case we conclude
that there must be differences in these effects but that the data are insufficient to reveal
these differences when the wavenumber effects are averaged over all frequencies and
vice versa. The interactions are of primary importance in our application.

If the hypothesis of no frequency effects is rejected and the other hypotheses are
accepted, we may suspect the existence of isotropic, single-frequency noise.

A broadband source in the direction of the axis of the array may result in a signifi-
cant effect at zero wavenumber with no frequency effect or interaction. Our definitions
imply that no other spatial direction corresponds to a single wavenumber, so that a
physical process giving rise to other row effects without column effects and interactions
does not appear meaningful for acoustic data transformed from space-time to wavenumber-
frequency.

Extension to Nonnormal and Nonwhite Data

As mentioned previously the least-squares estimates of the interactions, Eq. (62),
are valid for any distribution of the data. This is illustrated in computer-simulated
experiments discussed below. For nonnormal data, of course, the statistic defined by
Eq. (71) no longer has an F distribution. Unlike the usual analysis-of-variance applica-
tion, however, the number of degrees of freedom (vt = (I - 1) (J - 1), ,2 = IJ(K - 1)y
is quite large in our array application. If the distribution of the data is known, some
convenient function of the statistic defined by Eq. (71) or Eq. (73) may be asympotically
normal, as is z = (tn F)/2. In any case, an empirically determined threshold can
suffice to determine significance.

Simulated Experiments

The above analysis has been applied to computer-simulated sinusoidal signals in
normal and nonnormal noise backgrounds. If the noise is normally distributed in the
space-time domain, its amplitude is normally distributed in the wavenumber-frequency
domain, its power spectrum has a chi-square distribution, with a Rayleight distribution
of magnitude and a uniform distribution of phase. Our program permits analysis of all
four of these distributions generated from the same "data" samples.

Figure 1 is a computer printout of the analysis of the amplitude spectrum of a sinus-
oidal signal in white normal noise. In this case the signal-to-noise ratio was -6 dB, and
eight replications on an eight-by-32 array were simulated. The "target" was placed at
a point corresponding to about 1/10 of the distance between the 23rd and 24th column and
3/4 of the distance between the 5th and 6th rows. The "datat ' did not reveal a significant
row effect, but the column and interaction effects are highly significant. The five largest
of each category are printed in Fig. 1. Note. that even though the row effect is lost, the
row-column interaction appears as expected. Here the real and imaginary parts of the
spectrum are treated in adjacent columns.

Figure 2 shows the results of the analysis of the power spectrum of the same "data.
Since there are now only half as many columns, the degrees of freedom are not the same
as those of Fig. I, and the "target" frequency corresponds to column 12. The statistics
labeled F, of course, have the F distribution only when the transforms of the obser-
vations are normally distributed and not in this case (chi square) or in the cases to
follow in Figs. 3 and 4.

22



NRL REPORT 7181 23

DATA FILE tiAME=? /DN)/

CuNTRAST FILE 'A.AME2? /C.M1
N40. LARGESrI RUA.CUL.LPJI? 5,5.5

FIA) .40 5. D.F.- 7, 1792

F(S) * 2.715. D.F.' 31. 1792

FCAS) 2.860. D.F.- 217. 1792

LARGEST ROO EFFECTS

RC 7)t 1.114

Ri ,,. .652
RX 8)= .117
at 2)= .077

RC 33w -. 183

LARGEST COL EFFECTS

CC 233' 14.367

Cc 24)= 4.31e
cc 266. 3.203
Cc 3)3 3.136

CC 73= 2.584

LARGEST INTERACTIONS

TC 6- 23)z 85.916
To 5. 243. 24.519

rT 6. 17)- 14.476
TI 5. 253= 13.236

TI 4- 243= 12.858

Fig. 1 - Computer printout of the analysis
of variance of the amplitude spectrum of a
signal in normally distributed noise for a
signal-to-noise ratio of -6 dB

Figures 3 and 4 show the analysis of the Rayleign-clistributed magnitude and the
uniform-distributed phase, respecively, of the transforms of the same "data. Had the
'target" been placed on a point corresponding to one cell, the phase of the signal would
have been zero, and the analysis of Fig. 4 would be meaningless. Thus the value of
the phase is not a very meaningful test. Nevertheless it is interesting to note that the
"(correct" cell does have the largest interaction in Fig. 4. Note also that the noise
cells among the "top five" differ in these analyses.

The signal-to-noise ratio of the Fig. 5 "data" was -20 dB, the "target" corresponds
to cell (3, 17), and all else is as in Fig. 1. The row effect, the column effect, and the
interactions are all not significant. The interactions were statistically significant in
three out of ten simulated experiments at this level; however the largest interaction
corresponded to the "correct" cell in all ten. The largest interaction indicated the "cor-
rect" cell in six out of ten simulated experiments at the -23-dB level; two of these
showed statistically significant interaction effects. At the -26-dB level no interaction
effects were significant, and the "correct" cell was indicated in two out of ten simulated
experiments.

For a known distribution of observations the significance points of the distributions
may be calculated. If the distribution is unknown but can be assumed stationary, it may
be possible to obtain empirical significance values.
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RUN

DATA FILE &AME'? lOChf
cGnTRAST FILE NAME-? /CCt/
NE. LARUESTz RadCOL.tNTr=1 S.,s

F(A) a 42.433. 0.5.f 7. 896
F(S) * 46.S3Z. D..a 15s. 896
FCA91- 3.St? 0.P.' Ii0i S96

LARGEST ROd EFFECTS

RC 61= 835.465S
R( 5) -57.S4?
*C 2). -6b.306

C ls. -98.859
RC tI) -1te.e5t

LARaSEST Cu- EFFEcTs

CC 12)" 1884.834
cc I1I' 27.336
cc 9) -5.961
CC 113 - 58.65.7
C1 'T)' -9S-387

LARGEST IarERACTIONS

T( 6. 123 18611.t3
TI 17 1603 548.S44
TI 1. 1a). 563.260
TS 4. 9)s 582-473
Ts 7P 7)" 496.48S

FIg. 2 - Computer printout of the analysis
of variance of the power spectrum of a
signal in normally distributed noise for a
signal-to-noise ratio of -6 dB

Application to observations on phase stability rather than phase itself may be more
meaningful, since the latter may be zero in cases of interest.

It is possible to extend this analysis to Fourier transforms of four-dimensional
space-time samples. Let

Yi/ktf = 1ijk/At +ijk

represent the Ath observation of the ith, 1th, and kth components of the wavenumber
along the x7 y, and z axes respectively at the tth frequency, where the {('fizkt are n-
Iknown constants and the {-ijktm> are random variables. Of primary interest here is not
the separate wavenumber and frequency effects but the four-way interactiof estimated by

~A4BCD
a.jkt Yijk,- -Yi jk,. -yij.,F _yi~kt. _Y.jk

+ty.j + Yl.A, t + Y.ik*, + Yi, 3P + Y-ijt. + Y..kt.

- yi._ - 3�, j,,. - Yk� � - y ... t -+ Y� �...



NRL REPORT 7181 25

RUN

DATA FILE NAME'? /DRI'
CONTRAST FILE NAME"? /CRI/
NO. LARGESTI ROWGOL,INTl? 5.5.5

F(A) = 11.994' D.F.z 7. 896
FIB) - 13.578. D.F.' i5. B96
F1A53- 5.459, D.F.- 105. 896

LARGEST ROW EFFECTS

RI 63= 7.410
RI 2). .021
RC 8)' -. 145
RC 5)" -. 316
RC 4)) -. 941

LARGEST COL EFFECTS

Cc 12)= 16.893
cc I13= 1.968
Cc 9) 13.343
Cc 3)z -.085
CC 7)= -.302

LARGEST INTeRACTIO.S

TI 6, 12)" 71.562
T( 4. 9). 8.426
Tt 7, 10)' 8.261
T( 7. 7)3 6.985
TI 2, 6)= 6.914

Fig. 3 - Computer printout of analysis
of variance of the magnitude spectrum
of a signal in normally distrubuted noise
for a signal-to-noise ratio of -6 dB

and tests of the hypotheses HABCD: all ABDk =- o.

lnder assumptions of normality, statistical independence, and equal variances the
statistic

2e ABCD 1} {J-1) (X _) (L 1)

FAbcD = i- k kC )
F A P C YI/=C.)

2/IJC(Ml
I j k 

has an F distribution with V1 = (I - 1) (J- 1 (K- 1) (L - 1) and V2 = IJKL(M -1)
degrees of freedorq [47 ]. One obvious application would be to sampled data from a
three-dimensional ttcoustic array.
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RUN

DATA FILE SAME=? Itul/
CLMTRAST FILE &AnEr? /CUT,
NiU. LARGEST. RUk#,COL.LNT.? 5.5.5

FtA) .345, 0.F.'
FIB) 1t. 428, D.F.=
FIAS)= t.82e. D.F.w

7, a96
t15 896

tes. s16

LARGEST ROn EFFECTS

RI 6)' -t31
RC 3)z -lot
RC a)' I 073
RC 23' -. 8S5
RI 13" -. 825

LARGEST CUL EFFECTS

cc 15)' . 463
cc )- .359
CI 3)' .267
cc 4)' .9
C( 10)= .132

LARGEST 1 NTERACT IONS

TI 6, 12)' 3.l14
Tt 1. 151I 3.331
TC 7- 16)- 1.110
TI T7 10)= -828
TI a, 4>R .824

Fig. 4 - Computer printout of the
analysis of variance of the phase
spectrumn. of a signal in normally
distributed noise for a signal-to-
noise ratio of -6 dB
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RUN.

DATA FILE NAME-7 IDNII
CPJI[RAST FILE *JAME? /CNI/
No. LARGEST& RU9,CJL.[I NT ? 5,.5 

FtA) * 1.4108 D.f.- 7, 1792
Ft8) = .972. D.F." 31- t792
F(Aa) 1.88.3, D.F.= 217, 1792

LARGEST R3. EFFECTS

RI 3)" 7.236
RC 43" 5.499
RI t= S.5119
RI 7?) -. 7a 
Rt 6)' - .930

LARGEST C04 EFFECTS

GC 6)3 17.265
CI Ii)" 15.315
Ct 263" 13.379
CC 15)= 12.783
cc 24), 12.486

LARGEST INTERACTIONS

TI 3. 173-
TI( 6, 12)
T( 3. 25)"
rc 5. l)=
TI 3. 1 5)"

s8.129S
7 8.018 
73.196
69. 692
5 5 . 360

Fig. 5 - Computer printout of the
analysis of variance of the amplitude
spectrum of a signal in normally
distributednoise for a signal-to-noise
ratio of -20 dB

.....
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Appendix A

SAMPLING THEORY

E. T. Whittaker [All, J. M. Whittaker [A2 X, Shannon [A3l, and others have
shown that a function f(x) whose Fourier transform g(y) e ½ (-a, a) and vanishes
outside (-a. a) can be exactly represented by

f= tf(n/2a) Esin n(2ax - n)l/77(2ax-n). (Al)

Thus if f c) is to be estimated by sampling, the set {f(n/2a)) is a sufficient statistic,
Furthermore, if T is any 1: 1 transformation, then Tf(r/Za)) is also a sufficient
statistic. This concept of "conservation of information't justifies mapping the {f(/2a))
into any space which facilitates analysis. Given the {f(n/2a)) the generality of trans-
formations available for analysis is limited solely by the available computational facility.

In a practical application of this theorem the band-limited constraint of f does not
generally create any serious difficulties; the spacing 1/2a of the uniform samples may
be difficult to achieve; and of course the infinite set is never available. On the other
hand the exactitude provided by Eq. (Al) is seldom required in practice. The explicit
determination of f for all x is also seldom required. Errors introduced by improper
spacing and inadequate sampling may be amenable to analysis.

An array may be considered to provide a set of multidimensional samples, discrete
In one, two, or three spatial dimensions and either continuous or discrete in time. The
multidimensional analogs of the sampling theorems discussed here will therefore permit
a very general analysis of the information sampled by the array.

ALIASING

A set of equally spaced samples, {f(n/2a)} does not uniquely determine a function
but rather a set of functions: Whittaker's cotabular set (the set of aliases [At }.

Equation (Al) determines the cardinal function (the principal alias) - the unique member
of the cotabular set with the smallest maximum frequency component : a, where
a 1/2Ax is the Nyquist (folding, or cutoff) frequency, with Ax being the (uniform)
sample spacing. Thus if a function g(x) which contains a component at frequency V > a
is sampled with a sample spacing of Ax = 1/2a, that component will be replaced by its
principal alias in the reconstruction by Eq. (Al).

POISSON SAMPLING

The problem of aliasing is an inevitable consequence of equally spaced sampling.
No workable scheme seems so far to have been developed to sample at a definite but not
uniformly spaced pattern and thus avoid aliasing [A4, A53. We will comment further on
this possibility in a later section. One approach to alias-free sampling is in the work of

32
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Shapiro and Silverman, LA5 3, who show that if the sample points are randomly distrib-
uted in accordance with the Poisson probability law, the sampling is alias free. If there
are }± samples per unit time (distance), then the probability of exactly n samples in a
period of length T is

pn(jiT) = eL-r(AT)n/n! (A2)

The waiting time (distance) to the next sample then has the exponential probability
density function ue7't x. That Poisson sampling is alias free "follows ... from the
completeness of the Laguerre functions" LA5].

There are some interesting transformations related to Poisson sampling. Bolgiano
and Piovoso [A6,A7] claim an efficient representation of certain waveforms is obtained
by a "Poisson transformation." This transformation may be defined as

fn = | f (x)pG(x) Ad, (AS)
0

where p, is given by Eq. (A2) and

f OX) =Efn ,(X) I (A4)

in which

= (-)n 2ntl -X X(n V) Ln+v(2x),
V=0

where

kz( 

are the Laguerre polynomials LA8 . As with the efficient representations by Huggins
[A9] and others in terms of orthonormalized exponentials, this "Poisson transform,"
Eq. (AS) cannot be directly applied to discrete (sampled) data.

A related discrete transform (essentially a Gram-C harlier series, Type B) is given
by Schmidt EAlO) . Letting A = gT in Eq. (A2) we can write

Xk o
-kk = Y.! f (n,) P,(k) (X} (A5)

i-0

where

f(n) = pn(X) Fk(X) P(k)(k)

k=0
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and

1dk p,/X)
Pp=k) d 4 >

(Expressed in terms of the associated Laguerre polynomials LABI,Ln4(X) = (n-P) -t '

i(k)(x) becomes

P, k)k) = k!AX-k -k)() -Y

(K) = kI~ ~~VckL (n(

The relationship of the transformation given by Eq. (AS) to the "efficient" represen-
tation given by Eq. (A3) and to alias-free sampling remains to be shown. The generali-
zations of the sampling theorem discussed below may provide a useful connections with
a sampling theorem based on a Poisson-Laguerre type transformation>.

GENERALIZATIONS OF THE SAMPLING THEOREM

Weiss [All] and Kramer EA12 I have generalized the sampling theorem to functions
which satisfy integral transformations other than the usual Fourier one. Let f x) satisfy
a Fredholm equation of the first kind:

f x) = fK(. yg&)dy. (AT)

in which the kernel K(x, y) 6 L2(1) for each real x, A(y) e L2(I) , and there exists a
countable set {x)l such that {K(xj, y)9 is a complete orthogonal set on L2 (I) . Then

f W YE f (Xj (X, Xi} (AgX

is a generalization of Eq. (Al). The interpolation functions are given by

fIK(x. y)Kx2 y)dy

<x^X.>= I - . (A9
fIx 1K(i y) f2dy
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Campbell [A131 and Jerri [A14, Al] have compared the WKS (after both Whittakers
[Ai,A2], KotelnikoviA16, and Shannon IA3]) sampling theorem, Eq. (Al), with the
Kramer generalization, the WKSK sampling theorem, Eq. (A8). They conclude that the
classes of functions samplable with each of these theorems are identical. Jerri [AlS]
states that the "possible advantage of the WKSK sampling theorem" may become clear
when one "considers other integral transforms besides the Fourier one" for analysis.

Another possible advantage may be conjectured by noting that the class of sets of
which {X.} is an element is a broad one with few restrictions. In at least some cases
it may be possible to find a complete orthogonal set {K(x-, Y}1 corresponding to a given
{xi}, equally spaced or not. A sampling theorem using such a set may avoid the
aliasing problem.

Following the work of Jerri [A14], Kramer-type sampling theorems based on
Legendre functions and on Bessel functions have been derived. Using transformations
based on Legendre polynomials, three sampling theorems (with unit sampling interval
a = 1/2) are ) f)in(x-j) ( 2j+1) (AlO

rr0(x-j) xj-l

( ) , +I 2) / (21+1)Ž 0 (All)

and

f(X) ( ) ( 2j -1, X ŽO. (A12)

The second of these, Eq. (All), is given by Campbell [A13] and by Jerri LA14]. A
striking feature of these theorems is their similarity to each other and to Eq. (Al). Yet
they are not identical and produce different results in approximations using a small
number of terms.

Using the transformation

f (x)f FJ,(yVg 3 (y) dy

we obtain the Bessel-function sampling theorem

f(X E f(xj 2 Jn(R (A13)
j~~ ~~~ I X }O (V- -)
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where

Jsr(vwi = t, i = 1, 2,.. .

This sampling theorem was obtained by Kramer (A12 1 and by Jerri CA14.

The transformation

f(x) =J yJ(xy) gy) dy

yields an alternative Bessel-function sampling theorem given by Campbell EAISI:

f =X t(x 2 _ X (x) (AI4

where

J (x.) = 0, J = 1, 2 ...

Note that in Eq. (A14) the sample points xj are asymptotically equally spaced, whereas
in Eq. (AIS) they have unequal spacing.

STOC HASTIC PROCESSES

Sampling theorems have also been derived for stochastic processes fA17,AI8S. The
set Pf t1j) are then regarded as "the observed values of a multivariatetcomplex. Their
characteristic feature, however, is that the order of the set t1, t2, . . . i tis material
and not, for example, accidental as it would be for a random sample x1 x2 ... * x.,.
in which the suffixes are adjoined for convenience of identificationI [A191 . Recent work
by Shumway and Dean LA201 and by Shumway EA211 indicates methods of application of
statistical-estimation, regression, and analysis-of-variance techmiques to these prob-
lems.

36



NRL REPORT 7181

REFERENCES

Al. Whittaker, E. T., "Expansions of the Interpolation-Theory, " Proc. Roy. Soc.
Edinburgh 35, 181-194 (1915)

A2. Whittaker, J.M., "Interpolatory Function Theory," Cambridge Tracts in Mathe-
matics and Mathematical Physics, No. 33, Cambridge, England, Cambridge Univ.
Press, 1935

A3. Shannon, C.E., "Communication in the Presence of Noise," Proc. IRE 37,
10-21 (1949)

A4. Blackman, R. B., and Tukey, J.W., "Measurement of Power Spectra," New York,
Dover, 1959

A5. Shapiro, H.S., and Silverman, R.A., "Alias-Free Sampling of Random Noise,"
J. SIAM 8, 225-248 (1960)

A6. Bolgiano, L.P., Jr., and Piovoso, M.J., "Poisson Transform Signal Analysis,"
IEEE Trans. on Inform. Theory IT-14, 600-601 (July 1968)

A7. Bolgiano, L.P., Jr., and Piovoso, M.I., "Relationship of Poisson Transform to
Laguerre Expansions," IEEE Trans. on Computers C-18 (No. 12), 1128-1131
(1969)

A8. Szego, G., "Orthogonal Polynomials," 3rd edition, Providence, Am. Math. Soc.,
p. 101, 1967

A9. Huggins, W.H., "Signal Theory," IRE Trans. on Circuit Theory 3, 210-216
(Dec. 1956)

A10. Schmidt, E., "Uber die Charlier-Jordansche Entwicklung einer willkUrlichen
Function nach der Poissonschen Funktion und ihren Ableitungen, " Zeitschrift fur
angewandte Mathematik und Mechanik 13, 139-142 (1933)

All. Weiss, P., "Sampling Theorems, Associated with Sturm-Liouville Systems"
(abstract), Bull. Am. Math. Soc. 63, 242 (1957)

A12. Kramer, H.P., "A Generalized Sampling Theorem," J. Math and Phys. 38,
68-72 (1959)

A13. Campbell, L. L., "A Comparison of the Sampling Theorems of Kramer and
Whittacker," J. SIAM 12, 117-130 (Mar. 1964)

A14. Jerri, A. J., "On Extension of the Generalized Sampling Theorem," Ph. D.
dissertation, Dept. of Mathematics, Oregon State University, 1967

A15. Jerri, A.J., "On the Equivalence of Kramer's and Shannon's Sampling Theorems,"
IEEE Trans. on Information Theory IT-15, 497-499 (July 1969)

A16. Kotelnikov, T.A., "Material for the First All-Union Conference on Questions of
Communication," 1933

37



38 SWICK, YOUNG, AND FINNEY

A17. Balakrishnan, A.YV., "A Note on the Sampling Principle for Continuous Signals,"
IRE Trans. on Inorm. Theory IT-3, 143-146 (June 1957)

A18. Lloyd, S.P., "A Sampling Theorem for Stationary (Wide Sense) Stochastic
Processes," Trans. Amer. Math. Soc. 92, 1-12 (July 1959)

A19. Kendall, M.G., and Stuart, A., "The Advanced Theory of Statistics,"t Vol. S,
p. 344, New York, Hafner, 1966

A20. Shumway, R. H. , and Dean, W.C., "Best Linear Unbiased Estimation for Multi-
variate Stationary Processes," Technometrics 10, 523-534 (Aug. 1968)

A21. Shumway, RB. H., "Regression and Analysis of Variance for Multivariate Time
Series," J. Amer. Stat. Assn., in press



Appendix B

INTERPOLATION USING FINITE FOURIER SERIES

In the section "Interpolations and Transformations" f(x) is a complex function of a
multidimensional vector. We now consider use of finite Fourier series to interpolate
data sampled from a real continuous function f(x) of the single independent variable.

If an odd number of sample points (2 n + 1) is located within an interval L of x, f (x)
may be represented by

f(x) = (a0/2) + t k cos (2n7kx/L) + hA sin (27wkx/Lj. (BL)

If the number of points is even (2n), one representation is

f (x) Y. LI ak cos (277kx/L +I hic sin (27nkx/L)] (B2)
kmO

or alternatively

F (x> l ak ens [77(2k-1)x/L] + b.sin [ru(2k-1)x/L]}. (BS)
k-i1

As is discussed in the Ref s. Bl through B4 the equations are derived from the usual
complex Fourier representation by imposing the condition that f (x) be real for all x.
These equations simply represent possible choices of basis functions for the approxima-
tion of f(x) over the interval. When the sample points are equally spaced on the interval
(x = (i - l)d , where d is a constant), the basis functions are orthogonal on the
sampling points, and the coefficients may readily be computed. This is the primary
reason for the widespread use of the above representations. For example the coefficients
for Eq. (Bi) are easily shown to be

2n+I
ak= 2n 1 f (x.) ens [2w k(j - l) /(2 n + 1)] (B34)

and

2n, ~l 2-f (x,) sin [2n7k(j -1)/(2n + 1)]. (B5)
j=1
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Substituting these into Eq. (B1) yields
2n+1 n 2nk 1

f n 1 E f (xj> + 2 21 2 f(Xj {cos (27?kx/LE) cos [277k (I- 1)(2tn 1yj
2n =1 k=l j=1

+ sin (27rkx/L> sin E2wk (j - 1/(2n+ 1)4
which, with d = L/(2n + 1) becomes

2n+I 2n 1 Y Cf = (x) 2+ 1•l±22.. cn s k4 +1)7(2+1f j;.

This is of the form of (16) with the interpolation function

I(x, xi) = 21 + 2 cos [2r7k( -i+ 1)/(2rr+ 1)}. (B%

The corresponding interpolation function derived from Eq. (B3) is

I(X. Xi) =1 Cos (2k- 1) - i + 1)/2 T1 (B7)

and that corresponding to Eq. (B2) is

I(xx )r=2{ +2 [2nk&i + 1)/2 + cos [2rniJ + I)/2n1}.

As the number of terms tends toward infinity, (B6), (BW), and (BB) tend toward the same
limit,

- -rxfi). -sin v(x/d- j + 1)

which is equivalent to the usual interpolation function of Eq. (Al). Although Eqs. (B)
and (Ba) are interpolation functions for use on the same data, they are different, a fact
based on the different choice of basis functions in Eqs. (B2) and (B3). This is analogous
to the interpolation functions of (Al), (AID), All), and to (A12). The specific choice of
basis functions which will be "best" will depend on the data.

Numerical examples of I(x, xj)for d = 1 are tabulated in Table Bl (n = 1(> and
Table B2 (n "100), where SI, S2, S3, and S4 correspond to Eqs. (B9}, (B6), (B7) and
(B8) respectively. Note that, for the same number of terms, the difference between
Eq. (B8) (84) and Eq. (B9)(Sl) is about twice that of Eq. (B7)(53) and Eq. (89)(SI); Eqs.
(B6) and (B?) yield very similar results. All of these functions obey the necessary con-
dition for interpolation functions (with linearly independent sample values):

'(XV. xi) = (k3m
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The procedure followed above in deriving the interpolation functions is based on avail-
ability of closed-form expressions (e.g., Eqs. (B4)and (B5) for the coefficients in (1).

The matrices defined prior to Eq. (17) may be used directly to compute this equation.
For the case of interpolation, namely m = n, u = P-'. As an illustration of this direct
approach, consider the approximation in Eq. (B2), based on an even number of sample
points (2n ).

The basis functions may be written as

ICOS [277 (k- 1) x'L] | k :1, 2> , n + 1,Sk(x) =(1111)(sin [2r(k-n-1)x/L] , k= n+ 2, n+ 3, . . ., 2n.

Evaluation of Eq. (B11) at the points x; gives the matrix P. If this matrix is nonsingular,
its inverse p-' may be computed and substituted into Eq. (17) to obtain the desired inter-
polation function. Note that this procedure does not depend on the orthogonality of the
basis functions, on the xj chosen, or on any particular choice of the xi .

A computer program which carries out the procedure outlined above and prints the
interpolation functions over a range of x for i = 1, 2, . . . , 5 has been written. The
sample points x. may be equally or unequally spaced. Some results are shown in Table
B3 (equally spaced x.) and Table B4 (unequally spaced xj). We let 2n = 20, to corre-
spond with the tabulation in Table B1. (Compare S4 of Table BI with the case j = 1 of
Table B3.) Note that, as indicated in Eq. (B8), the interpolation functions are symmet-
rical about x = x; and the form of the functions is independent of j, that is, all of the
tabulations in Table B3 are of the same function simply displaced with respect to the
tabulations for other values of j . The results in Table B3 satisfy Eq. (B10).

The tabulations for unequally spaced xi in Table B4 are also seen to satisfy Eq.
(BiD), although the functions are not symmetric about X = xl and the form of the inter-
polation functions depends on j. It should be noted that some of the functions assume
values greater than unity for some values of xl which can occur when interpolation is
carried out on data taken at unequally spaced intervals.
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Table B1

Interpolation Functions (Eq9. (B6) through (139) for n = i0)

x I $1 f I2 . ,53 1 .534

1 . 9i3f004
.983631
.93 5439
.858393
.756326
.636619
* 504551
.367883
* 233872
. 139292
.000000

- a 694 1I
-.1 559 1 4
-.19889q
-. 21 6236
-.212236

-. 189206
-- 1 514831
-.133943

- 05St 779
- .0030000

.246839

. 335044
.11 1964
.1 261 37
.1 2-7323
* I 1 6434
*39D377
.066920
.03391 3

-.331739

-. 058468
-. 078035
-.089338
-. 009945
-. 0534091
- .69599
-. 349236
-. 025221

*- .800108
.82339 91

* .844547
* 059837
.6 68892
.079735
.306 5811
> -54 79 1
.0f3897K
*023374
0 00a 0

i .000038

. 099P58

-935628

.757278
*6372139
53i5229

.36i8556
.2834431.149623

'3 88838

*. @59825
-. 13 6755
-.1 99345
-.217925
.2139915
-.}191}02 5
-.1 33126
-. I185218

-0.350473

-. 3301884T

.0,3~000

847f6169
.092699
*1 1420b4
.1 268829
- 739341
.11 l9423

.3§6381 5

.333846

- .032996

-.060762
-.06129S

- .092996
* 09t5238

-. 38825S98
-. 9t73284
-. 051 991
-.82671 1

.825564
*.84761 9

.07 4834
.076375
.871387
0 59530

.842541
021 991
.003400

1 .003008
. 983 6 7Ž
935643

.8,58711
* 75732~4
.637q7A
. 6 8Tt 4Q . 585298

* 368625
.2344Ž8
.1 89657

-. O89867
-1 56342
* 199474
-I2 7989
*.21 41 62
. 191 213

-. t53296
-. 105341
-. 5a546
-0800a

.0 47699

.086761

.11 4437
* t29175
* 130656
.119 735
.09t89297
. @69024
* @35128

-0.330119
-.9610 24
- .0o1643

-.9341 6
- .895694
- .089746
.8-f73677

- @ 52V236
* @26878

*- .000887

.2 57 33
* .9479S8

. 064696

.81 4681
07G9698

.371906

.060104

. 42'932

. W22202

. 0a3830

1 .9C58'3at0

*935131
.3 7758-
. 755830
.6353t 1
-503356
. 366399
.2356.39
1I83563

- .88,52gS9
- . 154363
-.,1I95 329
_,.212 7 39
- .293265s
~-.15246
-. 1 47s363-.0502Ž3
- . 98338lF
.04S129
. 831631
.107a58

*1 210C4 

.189833
* .089953

@062455
.31} 539

-. 8291! 61
.05 3453
-.373917

-. 838}407
-081 5Th
-. 874931
.l61 5Rq-.943245

-. 821984

.02457~9e
.858;1498a
.a57481
.058542
.353933
.844454
.031 296
.1 5944
.88888.4

42

9.0
.1
*2
*3
.4

.6

.7
*8
9

1 .3

I -

1 .9

2-
2-1

2 * 3
2 .4

1.5

2.6

1-7

12-9
2.8
2.1

3.2

23-

3-4
3.5
3.6
3.7
3.3
3.9
4-3
4-1
4-9-
4-3
4-4
4.5
4- 3

3.9
4.8;

4.9
5.2

L

I

i

i
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Table B2
Interpolation Functions (Eqs. (B6) through (B9) for n = e00)

X 5 S2 I S3 54

90 .
.1
*2
.3
.4
.5
*6
. /
.8
.9

1 .0
1.11
1 .2
1 .3
1 .4
1.5
1.6

1 .8
1.9 
2 -0
2- 1
2.2
2.;3
2.4
2.5
2.6
2.7
2.8
2-9
3.'
3.!
3 2
3 3
3.4
3.5
3.6
3.7
3.8
3.9
4. 0
4-1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0

983631
*9354S9
* 685393
.756826
.636619
.504551
.367883
'23 3872
.*109292
01000

-.089421
-.1 55914
-.1980 90-.216236
-212206
.1 89206

-. 151481
-. 103943
- .51 770

-.000080
.046839
.085044
.111964
*1 P61 37
.1 27323
.11 6434
.0 95377
*06682.J
.333918
.003000
.331730
-.05468

-. 078035
-.039038
-.090945
-. 0840 91

-. 069599
-. 249236--g2SRP.~~l

. 0 0 00 f

.323991
*044547
.059867
.068802
.0 70735
.065811
.0L54791
.036978
*.3202974
* 90 300 10

1.300000
*983632
,935490
.858396
.756631
.636626
.5:;34558
.367890
*233878
.109296

-. 0 0000

*389425
- .155924

-.198 104
.216253
- 212226
-.189226
-151499
- 103956
.051777
-.000003
8046848
.085061
.1119 I 
.1261 67
.127356
.116466
.095405
.066842
.033929
.000000
-.031742
.058492
.0781370

- .089280-.090991
-084136
-.69638

-. 049265
-. 025236
.000000
.024007
*044579
.059933
.060856
.070793
.065867
.054840
.039015
. 20093
*000830

..000000

.983632
*93s 490
*85B396
.756831
.636626
.534558

.36 7890
.233878
° 109296
-.00400
-089425
.155924
-198104
.216253
-.212226
-.1 89226
-.151499
-. 03951
.051777
-.302000
.046848
.08 5061
I 1 988
126167

.1 27356

. I1 6467

.095405

.066842

.033930
*0 30 00 

.031742
-. 058492
-.078070
- r.9 099 3

*.084136
-. 069638
-. 049265
-. 025237

.00 08 90

.024007

.044579

.059933

.068857

.0 7 0794

.06 5868

.0548 40
* 0 390 15
.020093
.000000

1.000000
.983630
.935486
.858387
.756816
.636606
.504536
.367868
.233860
*1 09285

-. 000009
-.889412
-. 155896
-. 198063
- .216201
-. 212167
-. 189166
-. 151445
-.103915
-. 051754
--.000000

.046822

.085010

.111 915
* 126075
.127258
*116370
* 395319
.066777
.033894
.0030009

- .031704
- .058418
-. 077965

- .088953
-. 98854

-. 084002
-. 069521
-. 049177

.0251 g9
-' .000 0 0

.023957

.044482

.059796
*068692
.073617
.065696
.054691
* 338904
.0120034
.0 0 0 000
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Table B3
Interpolation Function (Equally Spaced Sample Points)

X I J=1 I J=2 I J=3 I J-4 I J=5
I __ _ , i t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0-00
.10
* 20
.30
* 40
.50
.60
.70
.80
.90

1 .l00

1 .20

1 .60
1 * 70
} .80
I *90

2*00
2.10
2.20
2.30
2*40
2.50
2* 60
2.70
2 * 80
2 90

3.00
3.10
3*20
3.30
3.40
3.50
3.60
3.70
3* 80
3 * 90

4* -00
4.10
4.20
4.30
4.440
4.50
4.60

I .000000
.983550
.935181
.857758
.755830
.635310
.503056
.366399
.232639
* 108563

* 000000
-. 088529

.- 54063
195329

-. 212739-.208265
-. I 85206
-. 1478163
-. 101158
-. 050223

-. 000000
.045128
.08163 1
.107050
.120104
.120710
.109888
.089588
.062455
.031539

.000000
-. 0291 S
- 053458
-. 70917
-. 080407
-. 081 592-.074931
-. 06158S
-. 043245
-. 021984

- .000000
.020578
.037888
.050490
.0 57481
.058542
.053938

.000000
* 108563
.232639
.366399
.503056
.635310
.7 55830
.857758
.9351 SI
.983550

1.000000
.983550
.935181
.857758
.755830
.635310
.503056
-366399
.232639
.108563

*000000
-. 088529
-.154063
-.195329-.212739
-. 208265
-. 185206
-.147863
-.101158
-. 050223

-. 00000e
.045128
.081631
*107050
.120104
.120712
.109888
.089588
.062455
.031539

.000000
-.029181
-.053458
-.070917
-.080407
-.081592
-.074931

-. 000000
-. 050223
-.101158
-.147563
-.185206
-.208265
-.212739
-.195329
- .154063
-.088529

-.000000
.105563
.232639
.366399
.503056
.635310
.755830
.857758
.935181
.983550

1.000000
*983550
.935181
.857758
.755830
.635310
.503056
.366399
.232639
.108563

.000000
-. 088529
-.154063
-.195329
-.212739
-.208265
-.185206
-.147863
-.101158

-.050223

- .000000
.045128
.081631
.107050
.120104
.120710
.109888

-.000600
.031 539
.062455
.0 89588
.1099888
.120710
.120104
.12570520
.081631
.045128

- .00000
- .050223
-. 101 15
-. 147863
-.1852e6
-. 208265
- 212739
-. 195329
-.1544063
-.083529

-.006000
. 108563
.232639
.366399
. 503256
.635310
. 75530
.857758
.935181
.983550

1.000000
*983550
.935181
.857758
.755830
.635310
.503056
.366399
.232639
.108563

.000000
-..0s8529
-. 154063
-. 195329
-. 212739
-. 20265
-. 18526

-eeeaeaa
-*.219984
-*043245
-.06-1582
- 074931
-0081592
-.25804017
-.070917

- .53458
-.@25Ž981

* 800080
.031S39
.062455
.089588
.1I09-358
.120710
.128104
.107as5
.2581631
-a4SM~

* 0060080
-.050aaa
-.1a1158
-.147863
-.185206

-.2 12 739
-. 1 95329
-. I154a6L3
-.088529'

- .000000
.108S63
-23Ž639'
.36639 9'
.523056
.635-31-8
.755830
.857758
.935181

.983558

.935181

.557758
0755830

. 63531l

.503056
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Interpolation Function
Table B4
(Unequally Spaced Sample Points)

x Jr 1 J=2 .-]=3 J= -
x I_ J=I J=2 I _J=:3 1 J=4 i J=5

0.00
.10
.20
.30
.40
.50
.60
.70
.s0
.90

1 .00
1.10
1.20
1 -30
1 .40
I .50
1.60
I .70
1 .80
1.90
2.00

2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20

3.30
3.40
3 * 50
3.60
3.70
3.80
3.90
4.00
4.10
4.20
4.30
4.40
4.50

1.000000
.821657
.661960
.521014
.398541
.293923
.206257
.134408
.077056
.032763

-. 000000
-. 022789
-. 037152-.044591
-.046530
-. 044290
-.039067
-.031919-.023755
- .015334
-. 007261

-. 000000
.006127
.010920
. 0 1 4292
.016249
.016677
.016321
.014774
.012453
.009590
.006417
.003154-.003000

-.002876
- .005338
-.007286
-. 008658-.009427
-.009604
-.009226
-.008359
-.007087
-.005505
-.003729-.001858
40000000

- .000000
.327003
.593622
.802159
.955949

1.059175
1 * 116691

* 1.33834
1. 116249
1.069717

1 .000000
.912696
.81 3122
.706199
.596376
.487562
.383063
.285660
197404

.119831

.053889

- .000000
-.041886
-.072232-.091643
-.101799
-.103382
-.096007
-.067155
-.0 72310
-.054907
-.036283-.017636
- .00000
.015779
.029056
.039384
.046516
.0 50 386
.051104
.048914
.044185
.037374
.029001
.019615
.009771

.000000
-. 270640
-. 460627
-. 575647
-. 623427
- .612431
- . 551754
- .450820
- .319109
-. 165891

.000000

.170371

.337633

.495935

.639252

.763448

.865295

.942662

.994471
1.020631
1.021945

1.000000
.957039
.995634
.81 9540
.731563
.635417
.534608
.432506
.332251
.236664
.148177
.068712

-. 000000
-. 0 57133
-. 102063
- .134699
-. 155379

-. 164823
- .164079
-. 1 54460
-.137473
-. 114756
-. 0858003
-.058902-.029069

-. 000000
.212656
.3550 71
.434888
.460692
.441 680
.387333
.307117
.210199
.105205

-000000-.098482
-. 184374
-. 252964
-. 300748
-. 325439
-. 325938
-. 302272
-. 255499
-. 187594
-. 101304

-. 000000
.112492
.232053
.354439
.475438
.591021
.697471
. 791499
.870337
.931611
.9 74383
.9 971 83

1.000000
.983266
.9480 13
.895814
.6 28703
.749097
.659693
.563374
.463104
.361630
.262385
.167416
.079278

-. 000000
-. 146162-.242033
-. 293844
-. 308383
-. 292727
-.253996
-. 199121

-.134637-.066512

.000000

.0 604 72
111375

.1 5011 9

.1 75062

.1 55461
1 81 520

.164109
* 1 34865
.095969
.050041

.000000
-. 051078
-. 100095
-. 144061
- .180216
-. 206138
- .21982 7-.219781
-. 205040
-. 1 75220
-. 130513
-.0 71676-.000000

.s02749

.1 74392

.272414
.374062
.476433
.576576
.671 590
.75871 6
.635438
.699538
.949186
.982982
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